The Best Thermal Baths on The Costa Brava

The Costa Brava which means ”Wild Coast” or “Rough Coast” is a coastal region of Catalonia in north-eastern Spain. Costa Brava stretches from the town of Blanes (which is 60 km northeast of Barcelona) to the French border. There are three counties in Costa Brava- Alt Empordà, Baix Empordà and Selva. All of them are a part of the province of Girona.To reach Costa Brava, you need to take a flight to the Girona airport. Alternatively you may reach the Barcelona airport in Spain which is 92 KMs away from Costa Brava, and then travel by road. Pinar Del Mar, Planamar, Park Hotel San Jorge & Spa, Hostal Alba and many other comfortable hotels are available on this land to pamper you. After checking in to your designated hotel, you may think about taking a thermal bath to relax your tired muscles.Before choosing the best thermal bath center for you, let’s have a look at the available options:-


From the times when the Roman Empire ruled this region, the people of the Costa Brava have been exploring the region’s many medicinal mineral waters and hot baths. It is believed that this water possess relaxing and healing qualities. In the modern times, these thermal baths of the area offer the visitors some of the best facilities. The therapeutic effects of taking a bath in these thermal baths are manifold.1) Balneari Termes Orion- Hotel Balneari Termes Orion offers maximum relaxation through the thermal bath in their facility. They have recently refurbished their luxurious spa to ensure that their clients receive the maximum benefits of these treatments.At 45 degrees Celsius, the water which emerges from the spring is ideal for treatments of aches and pains. There are several kinds if treatments offered in this luxurious natural spring. This bath is surrounded by natural mountains, woodlands and meadows to ensure that the patient receives the maximum benefit from the treatment.2) Balneari Vichy Catalan- This spa contains the purest Vichy Catalan water. The trained masseurs and therapists here provide the customers with a lot of services like chiromassage, inhalations, massage shower, foot-reflexology, paraffin baths, parafango, steam bath and sauna bath. There is a swimming pool which contains the same medicinal water which can be used by the customers for their treatments.Balneari Vichy Catalan Spa will allow you to completely unwind and become ache and pain-free before you leave the place.3) Peralada Spa- This place uses a unique methodology of treatment. They use the wine extracts to help improve their customer’s health and wellbeing. The free radicals present in the wine extracts help in the production of collagen fibres and elastin and it in turn helps in the formation of red blood cells in the blood. The blood circulation is improved, and the body’s immunity increases manifolds.


This luxury spa is located on the bank of a lake in Peralada, Girona. The crystal clear water of the lake is natural and possesses therapeutic properties. There is a steam room to relax your tired muscles and a Jacuzzi to bring you back to life. There are other treatments like heated marble treatment and a barrel shower. A sauna bath will help you to remove the toxins from your body and a thermal circuit around its swimming pools can be used for different kinds of treatments. There is an exclusive “Gran Claustro” meant for the most prestigious clients of the spa.Apart from Costa Brava, the nearby town of La Garriga also has many natural springs and spas for therapeutic purposes. So go ahead and explore. You will definitely have a very relaxing vacation.

5 Trends to Get Killer Logo Design in 2018

In this increasingly noisy world, where every day a new brand or product launches every second of a day, what would it take to make people remember you as a business or as a brand? A stunning, creative and memorable logo design with impeccable marketing tactics. Logo Designs is all known for such hefty job when it comes to do it all. Therefore, keeping your branding strong, modern and based over latest trends will not only give your business a competitive edge but will also perform exceptionally to attract more customers to your door and help them to recognize you with to experience similar ambiance.

Keeping your logo design contemporary helps businesses in many ways. It projects impressions that help people to identify you as a well-run and relatable brand and not like the dated trademark that does not communicate effectively. To draw attention to brands, business or even towards an advertisement, graphics, creativity, skills and all above concepts together creates a buzz and help your business to achieve goals of marketing and branding. However, when it comes to opting for professional logo Design Company, customers usually forget about the trends and demanding pattern in the design market.

Remember, a quality logo design is not always about a high-quality graphics or hues. A creative concept for the logo is barely born easily, so the cost you pay to professionals is not only about acquiring a symbol that is unique or different than the previous ones. It should comprise all the element, however, opt for companies that offer affordable packages and provide optimal quality services to design a perfect logo that defines your company, utterly.

Therefore, this article is here to educate both designers and customers to stay updated with trends that are going to sneak peek throughout 2018.

Creative Typography
In design, concepts either can make your first impression amazing or just the opposite of it. Therefore, creative typography allows today’s ventures to begin with something that has never done or seen before. In typographic logos, a designers’ skill matters most, however, giving the soul to design is all that one must strive for. In typography, regardless of which mood you choose to play with, either serious or silly, it is one of the top adaptive styles drive to create engaging visuals to get attention. A quick example would FedEx without which we cannot complete the list of our examples. Mailchimp, Cutting Room, and NME logos are considered to speak how these giants indeed choose typographic logos to define their business identity.

Apart from all the benefits that come along with this popular medium for logo designing, creative typography gives large room to play around with concept to provide a personality to the logo. It helps designers to speak-up their creative minds and builds a unique logo that is futuristic and versatile. If you believe in artistic values, then considering typography for your business to get it done in with the latest design.

Colorful & Vivid Logos
Grabbing most attention with monotone can be difficult unless a brand is not proceeding with resilient marketing strategy namely Dior and, Nike. However, recent logo design news we received regarding Apple Inc. logo speak about how soon we are going to multi-color logos in this year. Moreover, many popular platforms such as Instagram and YouTube shifted to new designing while sticking to the same frame of work with color, i.e., using vivid and vibrant hues. These examples lead us to comprehend the scope of bright and colorful logo design in the upcoming trends in logo designs.

Geometric Shapes
Typography is not the only characteristic of logo design getting popularization simplification these days. The definite shapes used in logos have recently seen with an increased focus on minimal geometry shapes, or geometry fashioned with a less-is-more approach. When you look at some of the gains of this style like versatile branding, you obtain visibility and modern concepts and ideas-it certainly clarifies that we should be expecting more in 2018.

Metaphoric Logo Concepts
Metaphors amaze minds instantly; with the design, it turns the concept into more creative characters. However, since it has been in trends for last few year, we know metaphors are probably not something new to logo designs. Subsequently, these metaphors are now expected to illustrate greater depth with impactful creativity in designs. These extremely out-of-the-box concepts have leverage metaphoric logo trends back in 2018 to amuse minds with curiosity, thoughtful ideas and unique perspective of design for any name it is expected to mold.

Subtle Animations
Years back when animated came into being; its adaptability amused people. However, back in time lack of animation logo display centers companies preferred to scale with static ones. In this era, from Facebook to website, it is easier, more attention-grabbing and animated-friendly space we have to display some of the creative concepts. Thus, keeping subtle animation to logo design seems to amuse and inspire if the concepts and design collaborate with subtle animate bring more significant meaning to logo design.

 

Successful Design Management for the 6 Stages of Design of Infrastructure and Building Projects

Design Management

Design Management seeks to establish project management practices that are primarily focused on enhancing the design process. For Infrastructure and Building projects the successful implementation of Design Management throughout the entire Project Life Cycle can represent the difference between a superior outcome for the project in terms of Quality, Timing, Cost and Value or failure, given the complexity of Infrastructure and Building projects in today’s environment.

Design Management is however primarily focused on the Design Process within the project framework and as such is only a part of the overall Project Management of a project, albeit a critical part of the project.

If you are going to be a successful Design Manager and achieve superior outcomes for both your clients and your own business, you cannot manage design haphazardly and expect consistent results. You must manage design projects by undertaking a proven stage by stage process. This brief article outlines those stage by stage processes and gives the Design Manager a guide to successfully design managing Infrastructure and Building projects. The Design Management role is considered in this article in the context of an in-house or consultant client side Design Manager and not a Design Manager within the design team itself. It is also on the basis of a fully documented Design and Construct only contract.

Stage 1: Early Design Management Involvement-Statement of Need

The output for this stage will be a Design Report that will directly feed into the Client’s Statement of Need and overall Business Case.

Early involvement to the Project Life Cycle is important but this may need to be reinforced with the Client to appreciate and understand the benefits this will provide. There are several key tasks during this stage:

1.1 Obtaining and Assessing all the available key design Information

  • Collation of all available data and information
  • Visit the site
  • Review contract as related to design aspects
  • Review the level of the design that has been prepared to date
  • Evaluate information and highlight critical issues
  • Review findings with Client
  • Assess the team capability requirements and resourcing
  • Assess any spend on fees required at this stage
  • Engage consultant as required to provide required technical and project inputs to assist the preparation of the design report.

1.2 Design Risk Review

  • Identify design risks and create a Design Risk Register
  • Identify any Safety in Design issues
  • Analyse and provide suggestions for risk mitigation for ongoing stages
  • 1.3 Design Report Input to Statement of Need
  • Prepare draft of design report input into the Statement of Need report and review with Client
  • Prepare final Design Report component into the Statement of Need report

Stage 2: Design Management during the Outline Design Stage

With the Statement of Need or Business Case formally approved for the project to proceed, the next step is to get the Outline Design Stage going.This stage involves clearly defining the Client requirements and project needs so as to form a sound foundation for the design process to proceed and is the right time to engage consultants and set up the formal Design Management process. The following are the key tasks in this stage:

2.1 Define Client design requirements and project design needs

  • Gather all available and updated project data from the Client.
  • Identify any gaps in the information provided.
  • Meet with the Client to review the information provided and identify additional information required.
  • 2.2 Engage Design Consultants
  • Engage all the key consultants that are required to develop the Functional Design Brief. It is critical that the consultant’s scope of work is clear for the level of input required and clearly noted in their Contract.

2.3 Prepare Functional Design Brief

  • Manage and coordinate the consultant team to deliver the Functional Design Brief that will respond to and record all the client requirements and needs and form the basis to proceed for all disciplines.
  • The Functional Brief will generally be supported by Concept design sketches that provide an outline of the proposed design.

2.4 Prepare the Design Management Plan (DMP)

The DMP provides the roadmap for the way the design will be managed and needs to be prepared at this stage of the design process for best results. The DMP is a component of the Project Management Plan prepared by the Project Manager.

The key Design headings in a DMP are as follows:

  • Introduction
  • Project Overview
  • Objectives
  • Process and related procedures
  • Status
  • Documentation & Deliverables Schedule
  • Value Engineering
  • Reviews
  • Change Management
  • Independent Third Party Checks, Permits
  • Quality Management
  • Client Approvals
  • Close Out & As Built Record

2.5 Outline Cost Plan

  • Manage and coordinate the development of the Outline Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.

2.6 Identify Design Risks

  • Identify Design Risks within the overall Risk Management framework.
  • Analyse and manage risks and update the Risk Register, design out risks where possible.
  • Ensure Safety in Design requirements are followed.

2.7 Value Management

  • Arrange a Value Management workshop. Value Management is a systematic review of the essential functions or performance of a project to ensure that best value for money is achieved. It takes an overall view of the function of the project as well as capital and recurrent costs.
  • Prepare a Value Management Report and implement recommendations.

2.8 Project Approvals

  • Outline and define the planning approval process and coordinate with the design process requirements.

Stage 3: Design Management during the Schematic Design Stage

With the Outline Design Stage formally approved for the project to proceed to the next stage, the next step is to get the Schematic Design Stage going. This stage involves developing the design across all the disciplines in response to the approved Functional Design Brief. The following are the key tasks in this stage:

3.1 Manage the Development of the SchematicDesign

  • Manage the team in developing the Schematic Design.
  • Monitor the compliance of the Schematic design with the Functional Design Brief.
  • Review Design Programme and coordinate with overall project programme.
  • Coordinate the development of the Schematic Design with the project procurement process.
  • Manage the preparation of the Schematic Design Report which contains drawings and outline specifications for all disciplines.

3.2 Schematic Design Cost Plan

  • Manage and coordinate the development of the Schematic Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.
  • Identify any major design decisions to the Quantity Surveyor that could influence cost.

3.3 Identify Design Risks

  • Identify Design Risks within the overall Risk Management framework.
  • Analyse and manage risks and update the Risk Register, design out risks where possible.
  • Ensure Safety in Design requirements are followed.

3.4 Value Engineering

  • Arrange a Value Engineering Workshop, including external peer reviewers to negate any “built in” resistance to change and get a fresh perspective
  • Prepare a Value Engineering Report and present to the Client and implement approved Value Engineering recommendations within the Schematic Design Report or in the detailed design stage as appropriate.

3.5 Project Approvals

  • Review and update the planning approval process and coordinate with the design process requirements.
  • Manage the submission of any required Planning Approval Applications.

3.6 Update the DMP

  • Review and update the DMP as required catering for the current project circumstances.

Stage 4: Design Management during the Detailed Design Stage

With the Schematic Design Stage formally approved for the project to proceed to the next stage, the next step is to get the Detailed Design Stage going. This important stage involves developing the design to tender and construction across all the disciplines in response to the approved Schematic Design Report. The following are the key tasks in this stage:

4.1 Manage the Development of the Detailed Design

  • Manage the team in developing the Detailed Design ready for tender including as required coordination meetings between disciplines experiencing coordination difficulties and the exchange of progress design drawings and specification for proper inter-disciplinary coordination.
  • Manage changes and variations.
  • Monitor the compliance of the Detailed Design with the Schematic Design Report, Value Engineering recommendations and the Functional Design Brief.
  • Review Design Programme and coordinate with overall project programme
  • Coordinate the development of the Detailed Design with the project procurement process including early issue of documents to the Quantity Surveyor to start the Bill of Quantities. Any “shortcuts” in the deliverables to accommodate the tender programme need to be fully understood and agreed
  • Coordinate the inputs to the development of the Contract documents being prepared by the Project Manager
  • Consider the requirement for lead disciplines that are producing background and base drawings, such as architects on building projects, to complete these ahead of the supporting engineering disciplines, so as to allow the supporting disciplines adequate time to complete their dependent work. The team cannot realistically work effectively all in parallel to deliver all at the same time without some lag with the lead discipline. It also allows time for the lead consultant to review the documentation from the dependent disciplines. Allow adequate time in the design programme for this lag in completion and coordination.

4.2 Detailed Design Cost Plan and Pre Tender Estimate

  • Manage and coordinate the development of the Detailed Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.
  • Identify any major decisions to the Quantity Surveyor.
  • Prepare for the Pre Tender Estimate (PTE).
  • Take any required action if the PTE is in excess of the Detailed Design Cost Plan.

4.3 Identify Design Risks

  • Identify any additional Design Risks within the overall Risk Management framework.
  • Analyse and manage any remaining risks and update the Risk Register, design out risks where possible
  • Ensure Safety in Design requirements are followed

4.4 Peer Review and Value Engineering

  • Arrange for the drawings and specifications that are being prepared for Bill of Quantities or that are at 90% completion to be issued for external Peer Review to review the “tender readiness” of the tender documents for each of the disciplines. This is also the time to review the consistency of the presentation of the documents across all disciplines and the adherences to project protocols such as title sheet formats, sheet sizes, drawing extents and overlaps, drawing scales, document numbering and revision notation.
  • As part of the Peer Review, Value Engineering of the detailing within the tender documentation should be undertaken at the same time to ensure the detailed design is the most efficient possible.
  • Manage the peer review responses and issue to the team to respond to the comments and incorporate the recommended and agreed comments or mark ups. Allow adequate time in the design programme for this important process.

4.5 Project Approvals

  • Review and update the planning approval process and coordinate with the design process requirements.
  • Manage the submission of any required Planning Approval Applications.
  • Obtain any required certification from the consultants.
  • Manage any required inputs to obtain the required Planning and Building approvals.

4.6 Update the DMP

  • Review and update the DMP as required to cater for the current project circumstances
  • 4.7 Tender Readiness Report
  • Prepare Tender Readiness report to the Client recommending issue to tender including any project issues or risks and the PTE.

Stage 5: Design Management during the Tender Stage

With the Detailed Design Stage Tender Readiness Report formally approved for the project to proceed to Tender, the next step is to arrange the design documents to be issued for tender. The following are the key tasks in this stage:

5.1 Prepare Design Documentation for Tender

  • Manage the team in delivering the documents as per the DMP at the required time in the required hardcopy and soft copy formats to the required locations.
  • Collate the required document transmittals.

5.2 Housekeeping

  • Take the opportunity to catch up with housekeeping of files on the server, in local drives and hardcopies.

5.3 Tender Technical Queries and Clarifications

  • Manage all incoming tender technical queries and clarifications during the tender period and arrange responses from any of the team where required.
  • Participate in any Tender clarification meetings with the contractor as requested by the Project Manager.

5.4 Addendums

  • Manage any design and documentation requirement for addendums that are required due to omissions from the Tender due to time constraints or from new Client requirements.

5.5 Tender Evaluation

  • Manage all required technical tender review and evaluation inputs from the team to allow the tender to be evaluated from a technical perspective.
  • Where required prepare a technical evaluation report and deliver to the Project Manager.
  • Participate in any negotiation meetings where technical matters require further clarification and arrange appropriate technical inputs from team.

5.6 Manage Consultants

  • Manage the finalisation of design related fees and any outstanding variations and claims.

Stage 6: Design Management during the Construction Stage

With the Tender formally awarded and on the assumption that the Project Manager will typically manage the construction phase delivery of the project, then the role of Design Manger will generally be reduced during this stage to a support role only or where required due to incomplete or ongoing design development resulting from client variations or changes made during tender negotiations. The following are some of the key tasks in this stage:

6.1 Issue Approved For Construction(AFC) documents

  • Manage the team in delivering the AFC documents as per the DMP at the required time in the required hardcopy and soft copy formats to the required locations.
  • Collate the required document transmittals

6.2 Housekeeping

  • Take the opportunity to complete the housekeeping of files on the server, in local drives and hardcopies

6.3 Outstanding Design

  • Manage the team in delivering any outstanding design due to client changes or changes resulting from tender negotiations

6.4 Manage Contractor Design Submissions

  • Subject to the complexity of the design, assist the Project Manager to manage the team in reviewing and responding to any contractor designs.

Design Management in Action

The above methodology represents a general approach for Design Managing Infrastructure and Building Project. This methodology has been applied successfully to numerous projects undetaken by the author, however as any Design Manager will know, every project is different and every design and project team is generally comprised of different team members.

The key to making the above methodology work is studying, applying and start implementing it to suit your particular project. It offers focus and a clear direction for any design for an Infrastructure or Building project to achieve a superior outcome for your Client and your own business.

Has BIM Changed MEP Design Workflow?

The MEP design and installation workflow involves a number of stakeholders and parties that are collectively responsible for overseeing a series of stages that will result in the building engineering (or building services) to be planned, designed, spatially coordinated, fabricated, installed, commissioned and maintained. Typically, the building services design stage follows the initial architectural design, from which point it can usually be designed in parallel with further architectural as well as structural design changes.

The engineering teams that typically design building services solutions are usually in one of two groups. The first group is typically the building designer, also known as the consultant engineer or the design engineer. It is the role of the design engineer to work closely with the architect to develop the overall building engineering elements including lighting, cooling, heating, drainage, waste, fire prevention and protection services. Traditionally, the design engineer will not be involved in the detailed spatial design of these services. Instead the detailed spatial design and installation would normally be handled by the second party, known as the MEP contractor (M&E contractor) or trade contractor. The MEP or trade contractor is responsible for evolving the initial consultant design into a workable and installation-ready building services solution.

In some instances, there is also a third party involved – the fabricator, who will be responsible for creating MEP components such as ductwork or pipework elements or in some cases pre-fabricated solutions that consist of pipework, electrical ladder, plumbing, ductwork and sprinkler within a frame (module) that is delivered to site for installation in risers, plant rooms and corridors.

This article is concerned with the role of the MEP designer and MEP contractor, specifically, the focus for this article is to discuss how BIM (Building Information Modelling) has influenced the MEP design workflow between the designer and the contractor.

Current MEP BIM Workflow Options

Essentially there are five different MEP design workflow scenarios that currently exist and these will be discussed in the article. They are as follows

  1. Traditional 2D design and 3D BIM coordination
  2. 3D MEP design and 3D BIM coordination
  3. Designers 3D BIM design and coordination
  4. Contractor 3D BIM design and coordination
  5. General contractor 3D model coordination

Traditional 2D Design and 3D BIM Coordination

Considering the traditional MEP approach first, this is where a consultant will create 2D design outputs, which include 2D plan layouts, 2D sections and MEP (M&E) schematics. This will indicate the design intent for the building based on the use specified by the architect. Once the consultant has completed this design information he will pass on the information to an MEP contractor who will be responsible for creating the MEP coordinated solution. This article assumes that the contractor will create a spatially coordinated 3D BIM model using BIM tools such as Revit MEP and Navisworks. The contractor will use the design information and create an installation-ready solution which takes into account installation, efficiency of pipe runs or duct bends, space for lagging and hanging the services, access for post install maintenance and so on. This traditional MEP approach, from a 2D design to a 3D model has existed for the past couple of decades and allows the contractor to add additional information into the model that can be used by him and by facilities management companies after the installation. The use of the 3D tool such as Revit is of course useful as it is an intelligent model, with parametric components and therefore, as well as allowing the contractor to identify and resolve clashes before any time is spent on site, it has other uses and applications where model ‘information’ is used and relied upon.

3D MEP Design and 3D BIM Coordination

The second workflow method is more directly influenced by BIM. As the MEP designer, one will use BIM tools to create a 3D model and associated drawings during his initial design phase (rather than a 2D design) before this information is handed across to an MEP trade contractor. The MEP design engineer will typically create a 3D model due to customer specifications and requirements for a BIM model, as in many cases a federated model (which combines the other disciplines in a single model) is needed by the client for a weekly review and hence the MEP consultant cannot simply provide a set of 2D drawings. In this workflow, the BIM model is effectively a 3D representation of what would otherwise be a 2D deliverable. It will therefore consist of areas where further changes are still needed by a trade contractor. Such examples include the use of library items rather than specific MEP trade contractor procured elements that may be used in the model. The creation of a 3D BIM model at this stage by the consultant is also subject to multiple architectural and structural model changes. These have a knock-on effect on the MEP solution as it is effectively a work-in-progress model for MEP with constant architectural and structural changes and therefore will never have the same level of efficiency, in terms of layout of services, compared to an MEP model where the architectural and structural models are frozen. The downside of this workflow method is of course the extra time taken to create a BIM model by the consultant team. Added to this issue is the fact that 3D modelling expertise and skills within a consulting engineering team can sometimes be limited. Once the consultant completes his model and passes it to the MEP contractor, the decision as to whether the contractor should adapt the model or start the modelling process from the start is really based on the quality of the model to start with. In reality both scenarios will exist, in some cases the MEP trade contractor is better off starting the BIM model again using only the 2D design drawings that are created by the consultant from his BIM model, while in some rare cases the trade contractor will use the consultants MEP BIM model and adapt and modify it with his changes, to make the model ready for installation. In both scenarios, the MEP contractor will always look to make value engineering additions and changes to the model as well as procurement led model changes.

Designers 3D BIM MEP Design and Coordination

The third MEP design workflow method is a more pure and direct consequence of BIM and it actually also starts to promote the benefit of BIM more significantly as it gets closer to ‘virtual design and construction’ aims of the industry. In this workflow the approach of design engineer is to create a BIM model that is spatially coordinated and that is using the actual specified components for the project. Typically, the consultant during this phase will have a longer period of time to create the model, allowing him to absorb the changes from structural and architectural disciplines as they progress through the detailing stages. The fact that the model is then coordinated with the structure and architecture as well as other MEP services allows the consultant to create a model that is being created according to an installation standard that is now more usable by an installer or fabricator. When the model in this workflow method is passed on to a contractor, the contractor may still wish to make final changes and adjustments in a round of value engineering. Typically, the contractor will use the same model in this workflow and make changes to the model provided by the MEP design consultant. Additionally, it is probable that the consultant engineer will not have provided invert (height) levels or dimensions from gridlines and walls for the MEP services on his drawings. In such cases the contractor will therefore have to create more detail in the drawings, but again contractor could use the consultant’s drawings and progress them in more detail for his/her use.

Contractor 3D Design and Coordination

The fourth workflow method involves MEP contractors (or trade contractors) taking on the design responsibility as well as the coordination responsibility. Whilst the coordination responsibility is an established skillset with experience of developing detailed and comprehensive vertical and horizontal strategies for coordination being part of the contractor’s core skills, the design responsibility is a new element for the contractor. This was traditionally known as a design and build approach; however, it is now becoming increasingly common especially in cases where companies are seeking to have rapid design and detailed coordination completed. Typically, the components to be used will be specified by the end client, allowing the contractor to design and model before creating his detailed coordinated drawings from the model, to allow installation and fabrication if needed. The reason that this particular workflow method is not the most popular at present is simply due to the volume of work in the market and also the design responsibility that also has to be assumed as in most cases, contractors may not wish to accept this risk or indeed they may not have the resources to complete the design work. For this workflow method to exist at all means that the contractor has to employ design staff directly and provide design liability insurance to allow him to design the MEP solution as well as install it. The benefit of this workflow option is obviously the time efficiency that is realized and therefore the cost benefit, as the cost of utilising contractor resource will usually be lower compared to expensive design engineering firms. However, it does come with some risk as the design expertise that design engineers possess cannot be easily replicated by contractors, even if they do employ in-house teams.

General Contractor 3D Model Coordination

The fifth variant of MEP design workflow is based on creating coordinated MEP models similar to the traditional 2D to 3D approach but for a different customer group. In this workflow method a 2D architectural, structural and MEP design that is to be used by a main contractor (or general contractor) is then progressed into a 3D BIM model by the contractor to assess the validity and completeness of the model. In some cases, some of the design elements from the different disciplines may be presented in 3D while others may be in 2D. It is also possible that different disciplines may provide models in different software that may or may not present software interoperability challenges. In such instances, a team will typically be employed to use the design data from architectural, structural and MEP designers to then create a 3D BIM model based on actual data. The aim is to identify any inconsistencies in the design data by identifying any clashes in the model, allowing the contractor in such a workflow method to effectively mitigate his/her potential risk. Any problems found within the model are usually passed back to the designers to make amendments to their 2D design for subsequent changes to the 3D BIM model which is ultimately owned by the main contractor. This BIM workflow solution is becoming less common now because MEP contractors and designers are creating BIM models themselves.

In summary, BIM has introduced a number of new workflow variants to the MEP design services sector. The previously tried and trusted method of a 2D design, from a designer, that was developed into a 3D coordinated MEP model by contractor is no longer the workflow solution used as firms now have many other variants and alternatives available. Along with BIM Modeling, other developments in the construction sector, including collaborative online working and work sharing have also contributed to the uptake levels for BIM and impacted the changes to workflow.

In terms of the MEP design workflow options, the most popular of these as we move forward will be the third option, which is the consultant creating a BIM model that is spatially coordinated, or the fourth option which is the contractor taking on the design responsibility as well as creating the coordinated BIM model. Both options are effectively a change to the traditional approach for MEP design and both point to a single source for the model and drawings as opposed to the historical two-tier design approach. All options discussed will require competent BIM coordination and MEP modelling teams and resources. XS CAD, with its large MEP coordination team and MEP engineering design team, which consists of mechanical and electrical engineering professionals, is well placed to deal with such projects for companies based in the USA, UK, Canada, Australia and New Zealand. As all are regions where BIM is now the preferred solution, XS CAD, with more than 16 years’ experience and a presence in each market is an ideal option for such companies.